Skip to contents

The cross product of x1 and x2 in R^3 is a vector perpendicular to both x1 and x2. If x1 and x2 are arrays of vectors, the vectors are defined by the last axis of x1 and x2 by default, and these axes can have dimensions 2 or 3.

Where the dimension of either x1 or x2 is 2, the third component of the input vector is assumed to be zero and the cross product calculated accordingly.

In cases where both input vectors have dimension 2, the z-component of the cross product is returned.

Usage

op_cross(x1, x2, axisa = -1L, axisb = -1L, axisc = -1L, axis = NULL)

Arguments

x1

Components of the first vector(s).

x2

Components of the second vector(s).

axisa

Axis of x1 that defines the vector(s). Defaults to -1.

axisb

Axis of x2 that defines the vector(s). Defaults to -1.

axisc

Axis of the result containing the cross product vector(s). Ignored if both input vectors have dimension 2, as the return is scalar. By default, the last axis.

axis

If defined, the axis of x1, x2 and the result that defines the vector(s) and cross product(s). Overrides axisa, axisb and axisc.

Value

Vector cross product(s).

Note

Torch backend does not support two dimensional vectors, or the arguments axisa, axisb and axisc. Use axis instead.

See also

Other numpy ops:
op_abs()
op_add()
op_all()
op_any()
op_append()
op_arange()
op_arccos()
op_arccosh()
op_arcsin()
op_arcsinh()
op_arctan()
op_arctan2()
op_arctanh()
op_argmax()
op_argmin()
op_argsort()
op_array()
op_average()
op_bincount()
op_broadcast_to()
op_ceil()
op_clip()
op_concatenate()
op_conj()
op_copy()
op_cos()
op_cosh()
op_count_nonzero()
op_cumprod()
op_cumsum()
op_diag()
op_diagonal()
op_diff()
op_digitize()
op_divide()
op_divide_no_nan()
op_dot()
op_einsum()
op_empty()
op_equal()
op_exp()
op_expand_dims()
op_expm1()
op_eye()
op_flip()
op_floor()
op_floor_divide()
op_full()
op_full_like()
op_get_item()
op_greater()
op_greater_equal()
op_hstack()
op_identity()
op_imag()
op_isclose()
op_isfinite()
op_isinf()
op_isnan()
op_less()
op_less_equal()
op_linspace()
op_log()
op_log10()
op_log1p()
op_log2()
op_logaddexp()
op_logical_and()
op_logical_not()
op_logical_or()
op_logical_xor()
op_logspace()
op_matmul()
op_max()
op_maximum()
op_mean()
op_median()
op_meshgrid()
op_min()
op_minimum()
op_mod()
op_moveaxis()
op_multiply()
op_nan_to_num()
op_ndim()
op_negative()
op_nonzero()
op_not_equal()
op_ones()
op_ones_like()
op_outer()
op_pad()
op_power()
op_prod()
op_quantile()
op_ravel()
op_real()
op_reciprocal()
op_repeat()
op_reshape()
op_roll()
op_round()
op_sign()
op_sin()
op_sinh()
op_size()
op_sort()
op_split()
op_sqrt()
op_square()
op_squeeze()
op_stack()
op_std()
op_subtract()
op_sum()
op_swapaxes()
op_take()
op_take_along_axis()
op_tan()
op_tanh()
op_tensordot()
op_tile()
op_trace()
op_transpose()
op_tri()
op_tril()
op_triu()
op_var()
op_vdot()
op_vstack()
op_where()
op_zeros()
op_zeros_like()

Other ops:
op_abs()
op_add()
op_all()
op_any()
op_append()
op_arange()
op_arccos()
op_arccosh()
op_arcsin()
op_arcsinh()
op_arctan()
op_arctan2()
op_arctanh()
op_argmax()
op_argmin()
op_argsort()
op_array()
op_average()
op_average_pool()
op_batch_normalization()
op_binary_crossentropy()
op_bincount()
op_broadcast_to()
op_cast()
op_categorical_crossentropy()
op_ceil()
op_cholesky()
op_clip()
op_concatenate()
op_cond()
op_conj()
op_conv()
op_conv_transpose()
op_convert_to_numpy()
op_convert_to_tensor()
op_copy()
op_cos()
op_cosh()
op_count_nonzero()
op_ctc_loss()
op_cumprod()
op_cumsum()
op_depthwise_conv()
op_det()
op_diag()
op_diagonal()
op_diff()
op_digitize()
op_divide()
op_divide_no_nan()
op_dot()
op_eig()
op_einsum()
op_elu()
op_empty()
op_equal()
op_erf()
op_erfinv()
op_exp()
op_expand_dims()
op_expm1()
op_extract_sequences()
op_eye()
op_fft()
op_fft2()
op_flip()
op_floor()
op_floor_divide()
op_fori_loop()
op_full()
op_full_like()
op_gelu()
op_get_item()
op_greater()
op_greater_equal()
op_hard_sigmoid()
op_hard_silu()
op_hstack()
op_identity()
op_imag()
op_image_affine_transform()
op_image_extract_patches()
op_image_map_coordinates()
op_image_pad()
op_image_resize()
op_in_top_k()
op_inv()
op_irfft()
op_is_tensor()
op_isclose()
op_isfinite()
op_isinf()
op_isnan()
op_istft()
op_leaky_relu()
op_less()
op_less_equal()
op_linspace()
op_log()
op_log10()
op_log1p()
op_log2()
op_log_sigmoid()
op_log_softmax()
op_logaddexp()
op_logical_and()
op_logical_not()
op_logical_or()
op_logical_xor()
op_logspace()
op_logsumexp()
op_lu_factor()
op_matmul()
op_max()
op_max_pool()
op_maximum()
op_mean()
op_median()
op_meshgrid()
op_min()
op_minimum()
op_mod()
op_moments()
op_moveaxis()
op_multi_hot()
op_multiply()
op_nan_to_num()
op_ndim()
op_negative()
op_nonzero()
op_norm()
op_normalize()
op_not_equal()
op_one_hot()
op_ones()
op_ones_like()
op_outer()
op_pad()
op_power()
op_prod()
op_qr()
op_quantile()
op_ravel()
op_real()
op_reciprocal()
op_relu()
op_relu6()
op_repeat()
op_reshape()
op_rfft()
op_roll()
op_round()
op_rsqrt()
op_scatter()
op_scatter_update()
op_segment_max()
op_segment_sum()
op_selu()
op_separable_conv()
op_shape()
op_sigmoid()
op_sign()
op_silu()
op_sin()
op_sinh()
op_size()
op_slice()
op_slice_update()
op_softmax()
op_softplus()
op_softsign()
op_solve()
op_solve_triangular()
op_sort()
op_sparse_categorical_crossentropy()
op_split()
op_sqrt()
op_square()
op_squeeze()
op_stack()
op_std()
op_stft()
op_stop_gradient()
op_subtract()
op_sum()
op_svd()
op_swapaxes()
op_take()
op_take_along_axis()
op_tan()
op_tanh()
op_tensordot()
op_tile()
op_top_k()
op_trace()
op_transpose()
op_tri()
op_tril()
op_triu()
op_unstack()
op_var()
op_vdot()
op_vectorized_map()
op_vstack()
op_where()
op_while_loop()
op_zeros()
op_zeros_like()